THE ECO-LABELING ON SUSTAINABLE ROOF MATERIALS

NORFATIHA BINTI HAMZANI

UNIVERSITI TEKNOLOGI MALAYSIA
UNIVERSITI TEKNOLOGI MALAYSIA

DECLARATION OF THESIS/UNDERGRADUATE PROJECT PAPER AND COPYRIGHT

Author's full name: NORFATIHA BT HAMZANI

Date of birth: 25 JUNE 1985

Title: THE ECO-LABELING ON SUSTAINABLE ROOF MATERIALS

Academic Session: 2008/2009

I declare that this thesis is classified as:

☐ CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*

☐ RESTRICTED (Contains restricted information as specified by the organization where research was done)*

☒ OPEN ACCESS I agree that my thesis to be published as online open access (full text)

I acknowledged that Universiti Teknologi Malaysia reserves the right as follows:

1. The thesis is the property of Universiti Teknologi Malaysia.
2. The Library of Universiti Teknologi Malaysia has the right to make copies for the purpose of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

SIGNATURE

NORFATIHA HAMZANI
850625115088

SIGNATURE OF SUPERVISOR

DR. ROZANA ZAKARIA

Date:

Date:

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.
THE ECO-LABELING ON SUSTAINABLE ROOF MATERIALS

NORFATIHA BINTI HAMZANI

A dissertation submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Construction Management)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

NOVEMBER 2008
DECLARATION

“I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in term of scope and quality for the award of the degree of Master of Science (Construction Management)”

Signature : ...
Name : DR. ROZANA BINTI ZAKARIA
Date : 28th NOVEMBER 2008
I declare that this thesis entitled

“The Eco-Labeling On Sustainable Roof Materials”

is the result of my own research except as cited in the references.

The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature : ..
Name : NORFATIHA BINTI HAMZANI
Date : 28th NOVEMBER 2008
DEDICATION

Thanks a million to:

MY SUPERVISOR- DR. ROZANA ZAKARIA
MY FAMILY- MAK, ABAH, MAMAT, PIPI, KORI, HANAN, DANNY, FAZRUL
MY GRANDPARENT- TOKWAN, TOKKI, KIANAN, TOKMEK
ALL OF MY FRIENDS
AND MYSELF....HEHE LOVE U ALL VERY MUCH MUAH2...
ACKNOWLEDGEMENT

Alhamdullilah with the blessed of Allah s.w.t has giving me enough knowledge and time to complete this program. I would like to take this chance to express and record my gratitude towards my Final Year Project supervisor Dr. Rozana binti Zakaria, for the time she allocated and all her guidance, encouragement, and friendship. Without her guidance in preparation, this thesis may not as perfect as presented here. All the help rendered by other lecturers who involve directly or indirectly were also very much appreciated. The time spent in doing this program gives memories that would last for forever.

I would also dedicate special thanks to all the respondents who involved in my questionnaires survey and for their constructive criticisms to enrich the findings of this study. Additionally, a special thanks to all my beloved friends who have encouraged and support with some beneficial tips in regards to finish this thesis.

A special thanks to my family members who supported in very positive minded, and encouraging me throughout my research and my study at Universiti Teknologi Malaysia, Johor. Thank you very much.
ABSTRACT

Construction industry is a major sector that needed the consideration of sustainable development agenda through sustainable construction. The sustainable construction therefore has several approaches on eco-friendly building, which focuses on harmony environment. These can be applied through the choices of material and construction methods that resulted in low level of environmental impacts worksites. The sustainable construction agenda involves optimal management of energy, water, waste management, maintenance and comfort improvements such as thermal and acoustic performance, visual and odour aspects through having good quality living. This research therefore is aim to classify sustainable characteristics or eco-friendly elements that can be utilised onto eco-labeling of roof materials through develop the assessment checklist guideline. This research therefore is focusing on roof materials of steep slope roof system that suitable with the tropical Malaysian climate. The data was gathered using the matrix checklist of sustainable characteristics for roof materials. The data then after was analysed using content analysis method and statistical analysis. This study found Clay Tiles, Fiberglass Insulation, Steel Roof Truss, Fiberglass Roofing Tissues and Aluminium drainage materials were the most sustainable roof materials that suited for a steep slope roof system. The simplified matrix checklist of sustainable roof materials then after is produced as the final result of this study that may benefit for construction industry references.
ABSTRAK

TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xviii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 General Background 1
1.2 Problem Statement 2
1.3 Aim of the Research 5
1.4 Objective of the Research 6
1.5 Scope of the Study 6
1.6 Importance of Study 7
1.7 Overview of Research Methodology 7
 1.7.1 Initial Stage 8
 1.7.2 Second Stage– identifying and collecting data. 8
 1.7.3 Third Stage – Analyse, commentary and summarise the data 9
 1.7.4 Final Stage – Research’s findings writing 10
1.8 Expected Findings 10
1.9 Summary of Chapters 11
1.10 Conclusion 13
1.11 Definition

2 SUSTAINABLE BUILDING

2.1 Introduction
2.2 Sustainable Development
 2.2.1 Implication of “Going Green”
2.3 Sustainable Construction
2.4 Sustainable Building
 2.4.1 Principles of Sustainable Design
 2.4.2 The Importance of Sustainable Building
2.5 Sustainable Materials
 2.5.1 Use Recycled Materials
 2.5.1.1 Design for Recycling
 2.5.2 Material Selection and Specification
2.6 Application of Environmental Assessment
 Method of Sustainable Building
 2.6.1 Environmental Building Assessment Methods
 2.6.2 Consideration of Design Tools Criteria in Environmental Assessment Method for Sustainable Building
 2.6.3 Existed Environmental Assessment Method
2.7 Eco-Labeling and Eco-friendly Materials
 2.7.1 Types of Environmental Labels
 2.7.2 Verification of Labeling Claims
 2.7.3 Examples of Environmental Labels in Canada

3 SUSTAINABLE ROOF OF BUILDING

3.1 Roof Parts and Materials
 3.1.1 Roof Terminology
 3.1.2 Roof’s Functional Requirement
 3.1.2.1 Strength and Stability
3.1.2.2 Resistance to Weather 80
3.1.2.3 Durability and Freedom from Maintenance 82
3.1.2.4 Fire Safety 83
3.1.2.5 Resistance to the Passage of Heat 84
3.1.2.6 Resistance to the Passage of Sound 86

3.1.3 Types of Roof 87
3.1.3.1 Single Roofs 88
3.1.3.2 Double Roofs 90
3.1.3.3 Trussed/ Framed Roof 91
3.1.3.4 Flat Roof 93
3.1.3.5 Sloping Roof 97
3.1.3.6 Pitched Roof 98
3.1.3.7 Medium and Large Span Roof 100
3.1.3.8 Green Roof 114
 3.1.3.8.1 Extensive Green Roofs 115
 3.1.3.8.2 Intensive Green Roofs 116
 3.1.3.8.3 Typical Construction 117
 3.1.3.8.4 Advantages of Green Roofs 119

3.1.4 Roof System Types 121
3.1.5 System Selection Criteria 125
 3.1.5.1 System Demise 126
 3.1.5.2 Contractor Familiarity and Availability 127
 3.1.5.3 Maintenance Intensity 128
 3.1.5.4 Nearby Government Roofs 129
 3.1.5.5 Technical Considerations 129
 3.1.5.6 Cost 130
 3.1.5.7 Warranty 132
 3.1.5.8 Implications of Sustainable Roof Design 132

3.1.6 Commercially Available Roofing Materials 133
3.1.7 Roof Finishes 134
 3.1.7.1 Roof Drainage 135
3.2 Summary of the Chapter 137

4 RESEARCH METHODOLOGY 139
4.1 Introduction 139
4.2 Research Design Flow Chart 141
4.3 Research Methodology Flow Chart 142
4.4 Content Analysis Flowchart 143
4.5 Data Collection 145
4.6 Development Questionaires 146
4.7 How to Conduct Survey 147
4.8 Observation of Roof Catalogues 148
4.9 Analysis of Data Collection 148
4.9.1 Analysis Method 149
4.10 Summary of the Chapter 151

5 DATA COLLECTION AND ANALYSIS 152
5.1 Introduction 152
5.2 Findings for Objective 1 153
5.3 Findings for Objective 2 156
5.4 Findings for Objective 3 162
5.4.1 Result of Research Analysis 162
5.4.1.1 Section A : Respondent’s Demography 163
5.4.1.1.1 Analysis of Respondents Employment 163
5.4.1.1.2 Analysis of Respondents Gender 164
5.4.1.1.3 Analysis of Respondent’s Working Experiences 165
5.4.1.1.4 Analysis Level of Understanding on Sustainable Concept 166
5.4.1.2 Section B : Roof Matrix Checklist 168
5.4.1.2.1 Roof Covering Materials 168
5.4.1.2.2 Insulation Materials 170
5.4.1.2.3 Roof Truss 171
5.4.1.2.4 Roof Underlays 172
5.4.1.2.5 Roof Drainage 173

5.4.1.3 Analysis on Sustainable Elements of Roof Covering 174
5.4.1.3.1 Ranking of Sustainable Elements on Roof Covering 176

5.4.1.4 Analysis on Sustainable Elements of Insulation Materials 179
5.4.1.4.1 Ranking of Sustainable Elements on Insulation Materials 181

5.4.1.5 Analysis on Sustainable Elements of Roof Truss 184
5.4.1.5.1 Ranking of Sustainable Elements on Roof Truss 186

5.4.1.6 Analysis on Sustainable Elements of Roof Underlays 189
5.4.1.6.1 Ranking of Sustainable Elements on Roof Underlays 191

5.4.1.7 Analysis on Sustainable Elements of Drainage Material 194
5.4.1.7.1 Ranking of Sustainable Elements on Roof Drainage 196

5.4.2 The Most Sustainable Roof Material’s Identified 199
5.4.2.1 Roof Tile Clay 199
5.4.2.2 Fiberglass Insulation Material 200
5.4.2.3 Steel Roof Truss 201
5.4.2.4 Fiberglass Roofing Tissues (Roof Underlays) 202
5.4.2.5 Aluminium Roof Drainage 204

5.5 Updated Sustainable Matrix Checklist Integration for Roof Materials 205
5.6 Conclusion

5.7 Section C: Respondent Opinion on Suitability of Matrix Checklist Usage
 5.7.1 Question
 5.7.2 Result
 5.7.3 Overall Respondent’s Opinion
 5.7.4 Analysis

5.8 Conclusion of Analysis

6 DISCUSSION OF FINDINGS
 6.1 Introduction
 6.2 Macro findings - The Overall Requirements for Sustainable Roof Materials Selection.
 6.2.1 The Suitability of Sustainable Elements Apply on Roof Materials
 6.2.2 Roles and Responsible of Contractor versus Client’s Requirements
 6.2.3 Potential Barriers to use the Matrix Checklist
 6.2.4 The Importance Usage of Matrix Checklist to select the most Sustainable Roof Materials
 6.3 Micro Findings – Research Findings from all around Malaysia
 6.3.1 Awareness of the Sustainability Principles usage in Malaysia Construction Industry
 6.4 Conclusions

7 CONCLUSION AND RECOMMENDATIONS
 7.1 Introduction
 7.2 Research Contribution to the Construction Industry
 7.3 Research Contribution to the Public/ Study
 7.4 Difficulties and Barriers Faced
7.5 Recommendations for Continuation Research 224
7.6 Conclusion for Overall Research Result 225

REFERENCES 226
Appendices 234
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 1</td>
<td>Triple bottom line of sustainable development</td>
<td>17</td>
</tr>
<tr>
<td>2. 2</td>
<td>Summary of environmental building performance assessment methods</td>
<td>42</td>
</tr>
<tr>
<td>3. 1</td>
<td>Sustainable roof material’s elements</td>
<td>138</td>
</tr>
<tr>
<td>4. 1</td>
<td>Sustainable Characteristic Matrix Checklist</td>
<td>144</td>
</tr>
<tr>
<td>4. 2</td>
<td>Ranking criteria (using Likert Method Scale)</td>
<td>144</td>
</tr>
<tr>
<td>5. 1</td>
<td>Employment Position</td>
<td>160</td>
</tr>
<tr>
<td>5. 2</td>
<td>Respondent’s Gender</td>
<td>161</td>
</tr>
<tr>
<td>5. 3</td>
<td>Respondent’s working experiences</td>
<td>162</td>
</tr>
<tr>
<td>5. 4</td>
<td>Respondent’s Level of understanding on Sustainable Concept</td>
<td>164</td>
</tr>
<tr>
<td>5. 5</td>
<td>Roof covering materials</td>
<td>165</td>
</tr>
<tr>
<td>5. 6</td>
<td>Insulation Materials</td>
<td>167</td>
</tr>
<tr>
<td>5. 7</td>
<td>Roof truss</td>
<td>168</td>
</tr>
<tr>
<td>5. 8</td>
<td>Roof underlays</td>
<td>169</td>
</tr>
<tr>
<td>5. 9</td>
<td>Roof Drainage</td>
<td>170</td>
</tr>
<tr>
<td>5. 10</td>
<td>Sustainable Elements of Roof Covering</td>
<td>171</td>
</tr>
<tr>
<td>5. 11</td>
<td>Sustainable Elements of Roof Covering</td>
<td>172</td>
</tr>
<tr>
<td>5. 12</td>
<td>Sustainable Elements of Insulation Materials</td>
<td>176</td>
</tr>
<tr>
<td>5. 13</td>
<td>Comparison between sustainable characteristics from questionnaire</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>analysis and catalogue’s specification for Fiberglass insulation.</td>
<td></td>
</tr>
<tr>
<td>5. 14</td>
<td>Sustainable Elements of Roof Truss</td>
<td>181</td>
</tr>
</tbody>
</table>
5. 15 Comparison between sustainable characteristics from questionnaire analysis and catalogue’s specification for Steel Roof Truss 185
5. 16 Sustainable Elements of Roof Underlays 186
5. 17 Comparison between sustainable characteristics from questionnaire analysis and catalogue’s specification for Fiberglass roofing tissue 190
5. 18 Sustainable Elements of Roof Drainage 191
5. 19 Comparison between sustainable characteristics from questionnaire analysis and catalogue’s specification for Aluminium roof drainage 195
5. 20 Updated Sustainable Matrix Checklist 202
5. 21 Active responses respondent’s opinion on suitability of matrix checklist usage 203
5. 22 Negative/passive responses respondent’s opinion on suitability of matrix checklist usage 205
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 1</td>
<td>Illustration energy performance of sustainable building</td>
<td>28</td>
</tr>
<tr>
<td>3. 1</td>
<td>Illustration of roof structure</td>
<td>73</td>
</tr>
<tr>
<td>3. 2</td>
<td>Pitched roof structure</td>
<td>77</td>
</tr>
<tr>
<td>3. 3</td>
<td>Lean to Roof</td>
<td>89</td>
</tr>
<tr>
<td>3. 4</td>
<td>Single roof structure</td>
<td>89</td>
</tr>
<tr>
<td>3. 5</td>
<td>Double Roof structure</td>
<td>90</td>
</tr>
<tr>
<td>3. 6</td>
<td>Timber and steel roof trusses</td>
<td>92</td>
</tr>
<tr>
<td>3. 7</td>
<td>Timber and concrete flat roofs</td>
<td>94</td>
</tr>
<tr>
<td>3. 8</td>
<td>Lead Flat Roofs</td>
<td>95</td>
</tr>
<tr>
<td>3. 9</td>
<td>Zinc and Copper Flat Roofs</td>
<td>96</td>
</tr>
<tr>
<td>3. 10</td>
<td>Sloping roof</td>
<td>98</td>
</tr>
<tr>
<td>3. 11</td>
<td>Northlight roof structure</td>
<td>101</td>
</tr>
<tr>
<td>3. 12</td>
<td>Northlight roof (side view)</td>
<td>101</td>
</tr>
<tr>
<td>3. 13</td>
<td>Northlight roof drawing</td>
<td>102</td>
</tr>
<tr>
<td>3. 14</td>
<td>Monitor roof</td>
<td>103</td>
</tr>
<tr>
<td>3. 15</td>
<td>Monitor roof (front view)</td>
<td>103</td>
</tr>
<tr>
<td>3. 16</td>
<td>Diagram of Portal Frame</td>
<td>104</td>
</tr>
<tr>
<td>3. 17</td>
<td>Span portal frame superstructure</td>
<td>104</td>
</tr>
<tr>
<td>3. 18</td>
<td>The TWA Flight Center Building - thin-shell structure</td>
<td>108</td>
</tr>
<tr>
<td>3. 19</td>
<td>Shell roof structure</td>
<td>108</td>
</tr>
<tr>
<td>3. 20</td>
<td>Folded plate slab</td>
<td>110</td>
</tr>
<tr>
<td>3. 21</td>
<td>Folded plate slab structure</td>
<td>111</td>
</tr>
<tr>
<td>3. 22</td>
<td>Grid structure roof illustration</td>
<td>111</td>
</tr>
<tr>
<td>3. 23</td>
<td>Main Railroad Station, Berlin, Germany</td>
<td>112</td>
</tr>
<tr>
<td>3. 24</td>
<td>Munich Olympic Stadium</td>
<td>113</td>
</tr>
<tr>
<td>3. 25</td>
<td>Extensive green roofs</td>
<td>115</td>
</tr>
<tr>
<td>3. 26</td>
<td>Typical extensive green roof</td>
<td>116</td>
</tr>
<tr>
<td>3. 27</td>
<td>Intensive green roofs</td>
<td>117</td>
</tr>
<tr>
<td>3. 28</td>
<td>Green roof in Europe</td>
<td>119</td>
</tr>
<tr>
<td>3. 29</td>
<td>Modified bitumen was field-coated</td>
<td>128</td>
</tr>
<tr>
<td>5. 1</td>
<td>Construction Roof Materials Life Cycle</td>
<td>156</td>
</tr>
<tr>
<td>5. 2</td>
<td>Respondent’s Employment</td>
<td>161</td>
</tr>
<tr>
<td>5. 3</td>
<td>Respondent’s Gender</td>
<td>162</td>
</tr>
<tr>
<td>5. 4</td>
<td>Respondent’s working experiences</td>
<td>163</td>
</tr>
<tr>
<td>5. 5</td>
<td>Respondent’s Level of understanding on Sustainable Concept</td>
<td>164</td>
</tr>
<tr>
<td>5. 6</td>
<td>Roof covering materials</td>
<td>166</td>
</tr>
<tr>
<td>5. 7</td>
<td>Insulation Materials</td>
<td>167</td>
</tr>
<tr>
<td>5. 8</td>
<td>Roof truss</td>
<td>168</td>
</tr>
<tr>
<td>5. 9</td>
<td>Roof underlays</td>
<td>169</td>
</tr>
<tr>
<td>5. 10</td>
<td>Roof Drainage</td>
<td>170</td>
</tr>
<tr>
<td>5. 11</td>
<td>Bar Chart of Sustainable Elements on Roof Covering</td>
<td>173</td>
</tr>
<tr>
<td>5. 12</td>
<td>Bar Chart Sustainable Elements on Insulation Material</td>
<td>178</td>
</tr>
<tr>
<td>5. 13</td>
<td>Bar Chart Sustainable Elements on Roof Truss</td>
<td>183</td>
</tr>
<tr>
<td>5. 14</td>
<td>Bar Chart Sustainable Elements on Roof Underlays</td>
<td>188</td>
</tr>
<tr>
<td>5. 15</td>
<td>Bar Chart Sustainable Elements on Roof Drainage</td>
<td>193</td>
</tr>
<tr>
<td>5. 16</td>
<td>Roof clay tile</td>
<td>196</td>
</tr>
<tr>
<td>5. 17</td>
<td>Fiberglass Insulation Material</td>
<td>197</td>
</tr>
<tr>
<td>5. 18</td>
<td>Steel Roof Truss</td>
<td>198</td>
</tr>
<tr>
<td>5. 19</td>
<td>Fiberglass Roofing Tissues</td>
<td>199</td>
</tr>
<tr>
<td>5. 20</td>
<td>Aluminium Roof Drainage</td>
<td>201</td>
</tr>
<tr>
<td>5. 21</td>
<td>Active responses respondent’s opinion on suitability of matrix checklist usage</td>
<td>206</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General Background

Construction sector has an important role to play in delivering sustainable development. The sustainable development is the initiative to meets the needs of the present without compromising the ability of future generations to meet their own needs (Brudtland, 1987). This response to sustainable development helps to minimise the negative environmental impact of buildings performance. The construction building is achievable by enhancing efficiency and moderation in the use of sustainable materials (Kohler, 1999). The environmental impact of construction, green buildings, designing for recycling and eco-labeling of building materials have captured the attention of building professionals across the world in responding to sustainable development (Rees et. al, 1999). Thus far, from these initiatives of sustainable development the Environmental Building Assessment (EBA) has emerged as one of the major issues in order to build up the sustainable construction (Hudson et. al, 2000).

The emergence and evolution of EBA responds to a tension between the desire for objective, scientifically rigorous and stringent performance criteria with the desire
for practical, transparent, simple to understand criteria that ask the industry to respond to manageable step changes in practice. EBA methods were conceived as being voluntary and motivational in their application and their current success can be either taken as a measure of how proactive the building industry is in creating positive change or its responsiveness to market demand. However, public authorities are increasingly using market-based tools as a basis for specifying a minimum environmental performance level for their building (Raymond et. al, 1990).

An initiative of EBA has been put into the ideas of green building development. The green building brings together a vast array of practices and techniques to reduce and ultimately eliminate the impacts of buildings on the environment and human health. But effective green buildings are more than just a random collection of environmental friendly technologies. They require careful, systematic attention to the full life cycle impacts of the resources embodied in the building and to the resource consumption and pollution emissions over the buildings complete life cycle.

Responses to sustainable development can be applied through sustainable building. By using selected sustainable materials whenever possible, the sustainable building will make a significant contribution to its overall impact on the environment. As the results it will provide the healthy living of the occupants of the building.
The characteristics of sustainable materials must be non-toxic, recycled and recyclable, renewable, local, standard sizes, modular, pre-cut (reduces waste), certified wood, durable and long lasting and etc. BREEAM, NABERS, Green Star, LEED, HK-BEAM and Eco-specifier are assessment tools that identified the classification of sustainable materials applied to the building.

The shift from 'green building' to 'sustainable building' entails a number of great challenges and opportunities for the developers and users of planning and building assessment tools. The current assumption is that a new generation of building assessment tools is required to meet the current and forthcoming requirements associated with the description and assessment of each building's contribution to sustainable development. Based on the available building assessment tools it can classify and give some ideas of sustainable characteristics for construction roof materials in this study in order to create an eco-labeling for sustainable roof materials.

1.2 Problem Statement

Building in Malaysia, currently had no permanent identification of sustainable building. Malaysian building development currently using Uniform Building by Law (UBBL) as a guideline, whilst as compared to European Union, they have their Green Building Program and Energy Efficiency Program. Lack of sustainable building identification in Malaysia led to poor building design that resulted inefficiency of energy and material usage. Material used and resources selection are importance in sustainable building, thus it will reduce habitat destruction and control depletion of natural resources. By building labeling, the way to construct the building will response to
sustainable site development, water efficiency, energy efficiency, indoor environmental quality and directly helps to reduce global warming. The materials with specific characteristics such as durable, comfortable and environmental friendly are the key variables of high performance of sustainable building efforts.

Malaysia need to develop its own building assessment, aiming essentially at accelerating the adoption of green building practices by the building sector concerned (Yeoh, 2005). Building materials in Malaysia are various types. This research, therefore, will conduct an eco-labeling for roof materials. It is led to identify the sustainable characteristics/ properties/ eco-friendly of roof are suitable used for a building. This labeling identification then will helps in future development of sustainable building assessment for Malaysia. This research will encourage the building stakeholders involve in building development seriously and take part using sustainable label which it additionally also enhance awareness and knowledge of Malaysian citizen on sustainable building.

This research focused on roof due to it is an important part of the building and plays a major role in providing a shelter and at the same time concern about the building envelope and energy. The building envelope is the separation between the interior and the exterior environments of a building. It serves as the outer shell to protect the indoor environment as well as to facilitate its climate control. The design of the supporting structure will be governed by the shape and geometry and the layout of the structural system for the building, the climatic conditions and the site environment and so on. The roof, insulation, and ventilation must all work together to keep the building free of moisture and provide protection from the heat. The roof design of a building can impact the buildings thermal insulation which is an important factor to achieving thermal comfort for its occupants. Insulation reduces unwanted heat loss or gain and can decrease the energy demands of heating and cooling systems. It related to the issues of adequate ventilation and the level of sound insulation (Wikipedia, 2008).
There are a few numbers of roofing choices available for high-performance buildings such as new roof shingles on the market today, which have produced electricity using solar technology. The building performances are more refer to the breathable qualities which endow with vapour permeability, hygroscopicity and capillarity in order to avoid interfaces. It allowed moisture or thermal conflict emerges, and to spread moisture load away from vulnerable area (Padfield, 1999). Roof technology also has reflective roofing materials or coatings that can help send the heat back into the sky rather than into the building. In the design of the building, roofing materials should be integrated into the whole-building design where sustainable identification has been put into consideration. So, the building construction’s materials has an important role to play in delivering sustainable living which reflects to social, economic and environmental reasons (Brudtland, 1987).

1.3 Aim of the Research

The aim of this research is to classify sustainable characteristics/ eco-friendly elements of roof materials which can be used to develop the matrix checklist of sustainable roof materials.
1.4 **Objective of the Research**

The goal of the research is to achieve objectives listed below:

1. To identify the importance of the Sustainable Building (SB).
2. To identify the application of sustainable building assessment.
3. To develop the sustainable characteristics/eco-friendly elements of roof materials and produce the matrix checklists in order to identify sustainable roof materials.

1.5 **Scope of the Study**

The limitation of this research is focusing on roof materials included insulation materials that are suitable for the Malaysian climate. Type of roof system that will be analysed is focusing on steep slope roof system. This type of roof are common roof structures used in Malaysia, which is including five main parts which are; the (i) roof covering, (ii) roof insulation, (iii) roof underlays, (iv) roof trusses and (v) roof drainage. The identification of sustainable elements of roof materials identified using content analysis from journals and observation through the roof material catalogue’s specification. The sustainable matrix checklist is developed and then distributed to various parties participate in Malaysian construction industry.
1.6 Importance of Study

The results from this study can be a guidance and reference sources to all parties involved in the construction industry such as architect, contractors and clients which need to consider the sustainable characteristics/ eco-friendly elements to construct the building. Sustainable characteristics/ eco-friendly roof also can give comfort to the occupants and protect the environment from the pollution, shelter from the rain and rainwater collection for domestic use, shade from the sun and UV protection, skylights for daylighting deep within buildings, surface for energy collection, solar hot water and photovoltaic. Roof form can be designed to minimise wind turbulence, wind driven stack ventilation, thermal and environmental barrier. Roof provides space for the most important insulation (Green Building Press, 2007).

1.7 Overview of Research Methodology

The research methodology are created to draft the necessary planning which should be done systematically to complete this research until achieve the determined objectives. The planning is very importance to make sure the smooth work while collecting and analyse the data for this research. Besides that, it is also can save a lot of time and cost. This methodology consists of four stages:
1.7.1 Initial Stage

a) Initial discussion

The initial discussion carried out the overview on issues related to this study. This discussion done using a brainstorming meeting and exchanging ideas within supervisors and others professional related parties.

b) Literature review

In this literature review, discussion covered the definition of the Sustainable Development (SD), Sustainable Building (SB), Sustainable Materials, Eco-labeling materials and the roof part structures. It is also discussed about the available Sustainable Building Assessment as the tools to assess the implementation of eco-labeling scheme for construction materials. The literature review will be captured through books, journals and previous thesis from Perpustakaan Sultanah Zanariah (PSZ) and various online sources.

1.7.2 Second Stage- identifying and collecting data.

In this stage the study will involves the process of collecting information. The important data that helps to achieve the objectives of this research are divided into two categories which are primer data and secondary data.
i. Primer data

The sources of primary data are from construction roof material suppliers, manufacturers and also the developers. The primary data will be gained by distributing the proposed sustainable matrix checklist. It is very important to know the ideas and opinion about the roof properties and also observation from the catalogue of construction material products of roof materials and structure.

ii. Secondary data

The secondary data will be collected by browsing websites and database to get understanding and information about the sustainability concept, foreign environmental building assessment, roof system and materials.

1.7.3 Third Stage – Analyse, commentary and summarise the data

In this stage, the data or information collected from stage one and two will be compiled and summarised to develop the research findings. The data collected are analysed using the qualitative method (content analysis technique) and also quantitative method (calculated by SPSS 11.5 software and Microsoft Excel XP 2003). An analysis for every type of construction roof’s materials will be produced in final sustainable matrix checklist. This final sustainable matrix checklist will present precisely the characteristics/eco-friendly elements of sustainable roof materials.
1.7.4 Final Stage – Research’s findings writing

The findings will be compiled in the final research writing to explain and summarise the collected data which is needed to achieve an overall determined objectives.

1.8 Expected Findings

The first expected findings is to list out the importance of sustainable building. By identifying what is the importance of sustainable building, this will helps the researcher to identify the elements of sustainable roof materials. The element identification can be done by referring to other advanced countries which have their own labeling scheme such as LEED and BREEAM. These elements should cover economy of resource, durability, comfort and environmental design.

Then the second expected finding is to identify the application of sustainable building assessment. This data collection can be collect based on the observation and understanding of the available foreign sustainable building assessment such as LEED, NABERS, BREEAM, ECO-SPECIFIERS and GREENSTAR assessment method.