UNIVERSITI TEKNOLOGI MALAYSIA

DECLARATION OF THESIS / UNDERGRADUATE PROJECT PAPER AND COPYRIGHT

Author's full name: REZA AGHLARA
Date of birth: 5 August 1975
Title: Application of 2D Digital Image Correlation in Mapping Bond Strain and Stress Distribution in Concrete
Academic Session: 2009-2010-3

I declare that this thesis is classified as:

☐ CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*
☐ RESTRICTED (Contains restricted information as specified by the organization where research was done)*
☒ OPEN ACCESS I agree that my thesis to be published as online open access (full text)

I acknowledged that Universiti Teknologi Malaysia reserves the right as follows:

1. The thesis is the property of Universiti Teknologi Malaysia.
2. The Library of Universiti Teknologi Malaysia has the right to make copies for the purpose of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

[Signature]
I2194348/K17454950
(NEW IC NO./PASSPORT NO.)

Date: 1 July 2010

[Signature]
DR. REDZUAN BIN ABDULLAH
NAME OF SUPERVISOR

Date: 1 July 2010

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.
"I hereby declare that I have read this project report and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Master of Engineering (Civil – Structure)."

Signature: [Signature]
Name of Supervisor: Dr. Redzuan Abdullah
Date: 1 July 2010
Application of 2-dimensional Digital Image Correlation for mapping bond strain and stress distribution in concrete

REZA AGHLARA

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Civil-Structure)

Faculty of Civil Engineering
University Technology Malaysia

July 2010
I declare that this project report entitled “Application of 2-dimensional Digital Image Correlation for mapping bond strain and stress distribution in concrete “ is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature :
Name : REZA AGHLARA
Date : 2 July 2010
I dedicate this work to my beloved,

Granny,

Parents

And my brother
ACKNOWLEDGMENT

I would like to express a sincere appreciation to supervisor of this project, Dr. Redzuan Abdullah for his patience, useful guidance and time which have been contributed in this research that without his assistance this work would not have been the same as presented here.

Technical Staff of material and structure laboratory at UTM should also be recognized for their assistance during experimental work, especially Mr. Raja Ezar Ishamuddin Raja Abdul Latif for endurance and great attitude.

Thanks to my friends and fellow postgraduate students for their help, view and tips at various occasions.

Also I wish to express my appreciation to those who have given me either direct or indirect assistance in this project.

I am grateful to all my family member for their support, especially my mother and father for always being there for me.

Good luck to each of you in your future.
ABSTRACT

Buildings and civil engineering structures nowadays are mostly constructed using reinforced concrete. In the reinforced concrete, one of the fundamental factors that influence its strength is bond between bars and concrete. In the reinforced concrete, one of the fundamental factors that influence its strength is bond between reinforcement bars and concrete. A lot of research on concrete anchorage bond had been carried out since 1913. However, till today the exact behaviour of anchorage bond in reinforced concrete is not very clear. An attempt to trace the stress contour in concrete due to the presence of anchorage bond had been made. Two dimensional digital image correlations were applied to images of pull-out concrete test blocks. Full-field strains contour on the surface of the concrete blocks were obtained at various level of pull-out forces using digital image correlation software. The strains were converted to stresses using plane stress concrete material constitutive equation. The results of this study show that the digital image correlation method is able to trace the stress components in the concrete surface under the influence of anchorage stresses. The distribution of the longitudinal stresses in the concrete surface along the reinforcement length was found to be nonlinear with maximum value occurs near the loading end.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xv</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 1
Introduction
1.1 General 1
1.2 Problem statement 2
1.3 Aim and Objective 4
1.4 The Scope of study and Limitation 4

Chapter 2
Literature Review
2.1 General 6

2.2 2-Dimensional Digital Image Correlation 6
2.2.1 Introduction 6
 2.2.1.1 History of Digital Image Correlation 9

2.2.2 Digital Image 10
 2.2.2.1 Introduction 10
 2.2.2.2 Pixel of a digital image 11
2.2.2.3 Grayscale Image 12
2.2.2.4 Image distortion 12
2.2.2.5 Image artifacts 13

2.2.2.6 Depth of Field and Field of View 14

2.2.3 Fundamentals of 2D DIC 15
 2.2.3.1 Specimen preparation and image capture 15
 2.2.3.2 Speckle pattern of Specimen 17
 2.2.3.3 Basic principles and concepts 18
 2.2.3.4 Shape function/displacement mapping function 20
 2.2.3.5 Correlation criterion 22
 2.2.3.6 Interpolation scheme 24
 2.2.3.7 In-Plane Measurements 24
 2.2.3.8 Out-of-plan Motion 25

2.2.4 Displacement field measurement 28
 2.2.4.1 Initial guess of deformation 29
 2.2.4.2 Calculation path 31
 2.2.4.3 Sub-pixel displacement registration algorithms 33
 2.2.4.4 Iterative spatial domain cross-correlation algorithm 33

2.2.5 Strain field estimation 34

2.2.6 Displacement measurement error analysis 38
 2.2.6.1 Speckle pattern of specimen 38
 2.2.6.2 Non-parallel CCD sensor and surface 39
 2.2.6.3 Image distortions 40
 2.2.6.4 Noise 40
 2.2.6.5 Errors related to the correlation algorithm 41
 2.2.6.6 Subset size 41
 2.2.6.7 Correlation criterion 42
 2.2.6.8 Interpolation scheme 43
 2.2.6.9 Shape function 43
 2.2.6.10 The Aperture Problem in matching 44
 2.2.6.11 The correspondence problem in image matching 45

2.2.7 Experimental work: Uniaxial Tension Specimen 46
 2.2.7.1 Experimental Results 48
 2.2.7.2 Discussion 50

2.2.8 Practical Considerations for accurate DIC measurements 51

2.2.9 Applications of 2D DIC 53

2.3 Bond Stress 53
 2.3.1 Introduction 53
 2.3.2 Bond stress 54
 2.3.3 Bond Mechanism 55
Chapter 3 **Research Methodology** 60

3.1 Overview 60

3.2 Experimental Work 60
 3.2.1 Introduction 60
 3.2.2 Preparation of concrete pull-out Specimens 61

3.2.3 Pull-out testing of Specimens 65

3.3 Correlation Analysis 67

Chapter 4 **Analysis and Results** 69

4.1 Introduction 69

4.2 Universal Machine Results 69
 4.2.1 Graph of overlap specimens 70
 4.2.2 Graphs of Normal Pull-out test specimens 71

4.3 Displacement of one point in specimens by LVDT and DIC 74
 4.3.1 Displacements Versus Forces 80
 4.3.2 Accuracy of Displacement Measurement 81

4.4 Full-field Strain results 82

4.5 Stress distribution 93
 4.5.1 Stress distribution of 11th specimen in 87 KN 95
 4.5.2 Stress distribution of 8th specimen in 67 KN 100

Chapter 5 **Conclusions and Recommendations** 105

5.1 Conclusions 105
5.2 Recommendations 106

References 107
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Commonly used cross-correlation criterion [2]</td>
<td>22</td>
</tr>
<tr>
<td>2.2</td>
<td>Commonly used SSD correlation criterion [2]</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Error sources of 2D DIC [2]</td>
<td>38</td>
</tr>
<tr>
<td>2.4</td>
<td>Effect of out-of-plane motion on 2D strain measurements [1]</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>Accuracy of Correlation Displacement with LVDT results as criterion</td>
<td>82</td>
</tr>
<tr>
<td>4.2</td>
<td>Out-put Result Format of Vic-2D</td>
<td>82</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The Strain distribution of FEM versus 2D-DIC</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Common Specimen with strain gages for study of bond [5]</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Bond Stress Components around reinforcement[6]</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Distortion can be observed readily in bottom pictures[1]</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Typical optical image acquisition system for the 2D DIC[2]</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Influence of radial distortion on the measured[2]</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Examples of speckle patterns[1]</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>(a) Reference image, the imposed red square is the subset used for</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>tracking the motion of its center point, (b) the calculated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>displacement vectors imposed on the deformed image.[2]</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic illustrations of a reference square subset before</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>deformation and a deformed subset after deformation[2]</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Telecentric Lens and stereo-vision cameras[1]</td>
<td>25</td>
</tr>
<tr>
<td>2.8</td>
<td>Typical horizontal and vertical displacement fields obtained</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>using 3 systems[1]</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Measured normal strains using all camera systems[1]</td>
<td>28</td>
</tr>
<tr>
<td>2.10</td>
<td>Schematic drawing of a reference subset (left), a subset after</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>rigid body rotation (middle) and a subset after large deformation[2]</td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>Computed whole-field cross-correlation coefficient distributions</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>when the deformed image is subjected to (a) rigid body translation,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and (b) 20° relative rotation[1]</td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>Local strain calculation window containing (2m + 1) × (2m + 1)</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>discrete displacement data used for strain estimation[2]</td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>The aperture problem in Image Matching[1]</td>
<td>45</td>
</tr>
</tbody>
</table>
2.14 (a) a repeating structure and (b) a texture less deforming structure\[1\]
2.15 (a) Geometry of specimen, (b) Installed extensometer to measure
2.16 (a) The experimental optical setup, (b) AOI and subset size
2.17 Engineering stress versus strain obtained using 2D-DIC and extensometer [1]
2.18 Strain Fields obtained by image correlation at three separate load levels during tensile experiment[1]
2.19 Additional strain fields obtained using 2D-DIC[1]
2.20 Development of anchorage length of reinforced concrete[6]
2.21 Bond stress distribution [6
2.22 Bond and splitting components of rib bearing stresses [6]
2.23 Typical pull-out specimens [6]
3.1 Dimension of Specimen
3.2 Preparation of Material for Formwork of specimens
3.3 Finished Formwork and Installed Bars (Ready For Casting)
3.4 Casting of Specimens
3.5 Nine specimens after opening of formwork
3.6 Curing of Specimens
3.7 Making speckle pattern on Specimens
3.8 The pull-out test configuration and setup
3.9 Failure modes of all specimens
3.10 Failure mode of specimen 10 and me
3.11 Area of Interest of 8th Specimen
4.1 Pull out test results for specimens with different length overlap
4.2 Pull out test results for specimens with Plain and Ribbed Bar (D=10mm)
4.3 Pull out test results for specimen with Ribbed Bar (12 mm)
4.4 Pull out test results for specimen with Plain and Ribbed Bar (D =16 mm)
4.5 Displacement of one point in 2ed specimen (Ribbed Bar D=10)
4.6 Displacement of one point in third specimen (Ribbed Bar D=10mm) 75
4.7 Displacement of one point in fifth specimen (Plain Bar D=12mm) 76
4.8 Displacement of one point in sixth specimen (SFC, Plain Bar D=10mm) 76
4.9 Displacement of one point in seventh specimen (NC, Plain Bar D=10mm) 77
4.10 Displacement of one point in 8th specimen (NC, Ribbed Bar D=10mm) 77
4.11 Displacement of one point in ninth specimen (NC, Plain Bar D) 78
4.12 Displacement of one point in tenth specimen (NC, Ribbed Bar D=16mm) 79
4.13 Displacement of one point in eleventh specimen (SFC, Ribbed Bar D=16mm) 79
4.14 Displacement of one point against Force in 11th specimen 80
4.15 Displacement of one point against Force in 8th specimen 80
4.16 Displacement of one point against Force in 2ed specimen 81
4.17 Displacement of one point against Force in 7th specimen 81
4.18 Vic-2D contours for 11th specimen in 87 KN, (a) x-coordinates (mm), (b) y-coordinates (mm), (c) u; displacements in x direction (mm) 83
4.19 Vic-2D contours for 11th specimen in 87 KN, (a) v; Displacements in y direction (mm), (b) e_{xx}; Normal Strain in x direction, (c) e_{xy}; Normal Shear Strain 84
4.20 Vic-2D contours for 11th specimen in 87 KN, (a) e_{yy}; Normal Shear Strain in y direction (mm), (b) e_1; The Major Principal Strain, (c) e_2; The Minor Principal Strain 85
4.21 Vic-2D contours for 11th specimen in 87 KN, (a) gamma; Normal Shear Strain, e_1; (b) Tresca Strain, (c) Von Mises Strain 86
4.22 The Normal strain of 11th specimen in x-direction at failure mode 87
4.23 Vic-2D contour for 8th specimen in 67 KN for u; displacements in x direction (mm) 87
4.24 Vic-2D contours for 8th specimen in 67 KN, (a) v; Displacements in y direction (mm), (b) e_{xx}; Normal Strain in x
4.25 Vic-2D contours for 8th specimen in 67 KN, (a) e_{yy}; Normal Shear Strain in y direction (mm), (b) e_1; The Major Principal Strain, (c) e_2; The Minor Principal Strain

4.26 Vic-2D contour for 8th specimen in 67 KN for γ; Principal Shear Strain

4.27 Vic-2D contours for 2ed specimen in 15 KN for e_{xx}; Normal Strain in x-direction

4.28 Vic-2D contours for 2ed specimen in 15 KN, (a) e_{yy}; Normal Strain in y-direction (mm), (b) e_{xy}; Normal Shear Strain (c) e_1; The Major Principal Strain

4.29 Vic-2D contours for 2ed specimen in 15 KN, (a) e_2; The Minor Principal Strain, (b) γ; Principal Shear Strain, (c) γ in

4.30 plain Stress descriptions

4.31 Normal Stress Distribution of 11th Specimen S_x, S_y and S_{xy} respectively in 87 KN tensile load. The unit of Stress is N/mm^2 and Shear is Radians

4.32 The Surface Normal Stress (S_x, S_y and S_{xy}) in Various Tensile load at a line in the width of the 11th specimen, (10cm lower than top of specimen, $y=100mm$)

4.33 The Surface Normal Stress (S_x, S_y and S_{xy}) in Various Tensile load at a line in the length of the 11th specimen, top of the Bar ($x=-20mm$)

4.34 Normal 3D Stress Distribution of 8th Specimen S_x, S_y and S_{xy} respectively in 62 KN tensile load. The unit of Stress is N/mm^2 and Shear is Radians

4.35 The Surface Normal Stress (S_x, S_y and S_{xy}) in Various Tensile load at a line in the width of the 8th specimen, (10cm lower than top of specimen, $y=100mm$)

4.36 The Surface Normal Stress (S_x, S_y and S_{xy}) in Various Tensile load at a line in the length of the 8th specimen, top of the Bar ($x=-20mm$)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Concrete Module of Elasticity</td>
</tr>
<tr>
<td>(e_{xx})</td>
<td>Normal Stress in x direction</td>
</tr>
<tr>
<td>(e_{yy})</td>
<td>Normal Stress in y direction</td>
</tr>
<tr>
<td>(e_{xy})</td>
<td>Normal Shear Stress</td>
</tr>
<tr>
<td>(e_1)</td>
<td>Major Principle Stress</td>
</tr>
<tr>
<td>(e_2)</td>
<td>Minor Principle Stress</td>
</tr>
<tr>
<td>(f_c)</td>
<td>Compressive Strength of Concrete</td>
</tr>
<tr>
<td>(F(x,y))</td>
<td>Grey Scale function of reference image</td>
</tr>
<tr>
<td>(G(x,y))</td>
<td>Grey Scale Function of deformed image</td>
</tr>
<tr>
<td>(S_x)</td>
<td>Normal Stress in x direction</td>
</tr>
<tr>
<td>(S_y)</td>
<td>Normal Stress in y direction</td>
</tr>
<tr>
<td>(S_{xy})</td>
<td>Normal Shear Stress</td>
</tr>
<tr>
<td>(U)</td>
<td>Horizontal Displacement</td>
</tr>
<tr>
<td>(V)</td>
<td>Vertical Displacement</td>
</tr>
<tr>
<td>(\nu)</td>
<td>Poisson Ratio</td>
</tr>
<tr>
<td>(\varepsilon_{xx})</td>
<td>Normal Strain in x direction</td>
</tr>
<tr>
<td>(\varepsilon_{yy})</td>
<td>Normal Strain in y direction</td>
</tr>
<tr>
<td>(\varepsilon_{xy})</td>
<td>Normal Shear Strain</td>
</tr>
<tr>
<td>(X)</td>
<td>Horizontal Coordinates</td>
</tr>
<tr>
<td>(Y)</td>
<td>Vertical Coordinates</td>
</tr>
<tr>
<td>(Z)</td>
<td>Distance between specimen plane and camera lens</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General

As a practical and effective tool for quantitative in-plane deformation measurement of a planar object surface, two-dimensional digital image correlation (2D DIC) is now widely accepted and commonly used in the field of experimental mechanics. It directly provides full-field displacements to sub-pixel accuracy and full-field strains by comparing the digital images of a test object surface acquired before and after deformation.

On the other hand, the importance of the material as reinforced concrete in concrete structures is known to anybody who is involved by construction and civil engineering field. Statistically speaking, in comparison with the steel structures, the number of concrete structures has been growing day by day. So by having these preferences for concrete structures, it is needless to say that every property of this material will have a great importance and extremely worthful to study comprehensively in order to find out exact behavior of that material perfectly. A large number of books and published articles in this area is a good evidence for this claim.
One of the most important features in the reinforced concrete is the bond between bars and concrete that will be studied in this project. The joint behavior of steel and concrete in a reinforced concrete member is based on the fact that a bond is maintained between two materials after concrete hardens. If a straight bar of round section is embedded in concrete, a considerable force is required to pull the bar out of the concrete. If the embedded length of the bar is long enough, the steel bar may yield; leaving some length of the bar in the concrete. The bonding force depends on the friction between steel and concrete, interlocking and chemical adhesion.

1.2 Problem statement

Mathematically and theoretically, the calculation of bond strength has not done yet clearly by consideration of many effective parameters. So the development length that used in practical structures is calculated by the experimental formula in codes. That may cause to use an extra unnecessary length of bar in some cases. In order to have a helpful step and be closer to theoretically solution, having realistic bond stress distribution based on experimental samples will be useful to great extent. Moreover having such distribution, helps us to have high understanding of bond behavior that leads using bars properly in concrete. Having full-field strain and stress measurements of concrete pull-out specimen can be helpful to who are interested in realizing bond behavior precisely and it may change some conception or may find new ideas in the bond field. It is worth to note that finding of strain contour based on theoretical technique as Finite Element Method depends on many factors, and bond simulation cannot be done easily. But 2D-DIC strain analysis is based on experimental work and more reliable. Figure 1.1 shows apparent differences of contour from FEM versus 2D-DIC.
Figure 1.1 The Strain distribution of FEM versus 2D-DIC from left to right respectively

2D-DIC is a new method in the practical area and it is important to researchers to know; How someone can trust to the 2D-DIC?, What’s the accuracy rate of this measurement? What’s the feature of this method?, What are the requirements for doing this measurement? So, to answer these questions, more study and experiment should have been done in this field.

Moreover, 2D-DIC is more economical in comparison with the other common measurement method in lab works. For example, the figure 1.2 shows the configuration of a specimen has been done recently for bond study purpose. As it can be observed about 26 strain gages have been used for this research. With assuming 100 MR per gage, the total gage expense will be 2600 MR just for one specimen. In case of being capable of using 2D-DIC there is no need for such a high expenses.

Figure 1.2 Common Specimen with strain gages for study of bond [5]
1.3 Aim and Objective

Two objectives are defined for this project as following;

1- Application of 2-Dimensional Digital Image Correlation (2D-DIC) for finding motion and deformation on concrete pull-out specimen.

2- Mapping bond strain and stress component distribution on front plane of concrete pull-out specimen.

As shown in figure 1.3, the reaction of subjected tensile force on reinforcement are inclined reaction that can be presented with two components, parallel and normal to bar axes. Mapping of distribution of these 2 components on the face of specimen by 2D-DIC are objective of this research.

![Figure 1.3 Bond Stress Components around reinforcement [6]]
1.4 The Scope of study and Limitation

Generally for mapping stress distribution we have three methods based on theoretical, software and lab experiments. Theoretical method cannot be an accurate reference because it is an approximate method based on several hypotheses and also there are some unrevealed factors that cannot be considered in theoretical method such as direction of concrete pouring. In this project theoretical and software result for distribution is not the work scope.

Real bond stress distribution of a concrete pull-out specimen is 3-dimensional around the bar in concrete. 2D-DIC is capable to measure deformation on a plane. So the stress distribution due to the bond on the surface of the specimen will be calculated in this project.

The bond strength depends on a lot of parameters as concrete property, bar diameter and so on. The purpose of this project is mapping of stress distribution of bond and the effect of parameters to the bond is not the scope of the work. The ultimate bond strength may be able to find with 2D-DIC but it needs different configuration of specimen and it is not intention of this project.