FACTORS INFLUENCING TO THE SELECTION OF SEWAGE TREATMENT PLANT

NOOR WAHYU BINTI NGADIMIN

A report submitted in partial fulfilment of the requirements for the award of the degree of Master of Science (Construction Management)

DECLARATION OF PROJECT PAPER AND COPYRIGHT

Author's full name : NOOR WAHYU BINTI NGADIMIN
Date of birth : 27th July 1979
Title : FACTORS INFLUENCING TO THE SELECTION OF SEWAGE TREATMENT PLANT
Academic Session : 2009/2010

I declare that this thesis is classified as :

☐ CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*
☐ RESTRICTED (Contains restricted information as specified by the

☐ OPEN ACCESS I agree that my thesis to be published as online open access (full text)

I acknowledged that Universiti Teknologi Malaysia reserves the right as follows:

1. The thesis is the property of Universiti Teknologi Malaysia.
2. The Library of Universiti Teknologi Malaysia has the right to make copies for the purpose of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified by :

_________________________ __________________________
SIGNATURE SUPERVISOR SIGNATURE

790727-04-5058
(NEW IC NO. / PASSPORT NO)

DR ROZANA BINTI ZAKARIA
SUPERVISOR NAME

Date :
Date :

NOTES : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.
“I hereby declare that I have read this master’s project and in my opinion this thesis is sufficient in terms of scope and quality for the award of the Master of Science (Construction Management)”

Signature : ..

Name of Supervisor : DR. ROZANA BINTI ZAKARIA

Date : ..
FACTORS INFLUENCING TO THE SELECTION OF SEWAGE TREATMENT PLANT

NOOR WAHYU BINTI NGADIMIN

A report submitted in partial fulfilment of the requirements for the award of the degree of Master of Science (Construction Management)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

MAY 2010
DECLARATION

I declare that this master’s report entitled “Factors Influencing to the Selection of Sewage Treatment Plant” is the result of my own research except as cited in references. The master’s report has not been accepted for any degree and is not concurrently submitted in candidate of any other degree.

Signature :...
Name : NOOR WAHYU BINTI NGADIMIN
Date : MAY 2010
ACKNOWLEDGEMENT

In the Name of Allah, the Compassionate, the Merciful, Praise be to Allah, Lord of the Universe

I would like to express my appreciation all those have contributed to successful completion of this project paper. Most especially, a big thank you to my supervisor, Dr Rozana Zakariah for all his entire guidance, advices and suggestions in preparing this project. To all examiners, thank you for the suggestion, comment and ideas for overall my project.

My gratitude and sincere thank also goes to all my coursemate and friends who offers their help in making this project a reality. Finally, special dedicated and thanks a lot to all my beloved family especially my father En Ngadimin Warji, my late mother Arwahyarhamah Pn Jumaah Lisot and my brothers Noor Wahyudy and Noor Wahedy who have contributed in giving me their moral support, encouragement and understanding, patient in carrying out this project to such great degree. Thank you for being there whenever I need you all.

Also to all who have in one way or other, direct or indirectly, contributing me for their invaluable help, assistance and advice.

Thank you……….
The development of sustainable wastewater infrastructures is very critical at the initiating design stage in order to guarantee a long term achievement of services. Thus, sustainable strategic planning and engineering process including site planning is an important factor. Malaysia has undergone various experience and challenges in managing their sewerage management system. Most of the sewage system was developed by the developers to serve their own scheme development. This resulted in varies degree of design, sizes and performance quality. Moreover, some of the systems are inherently defective in design. The current sewerage system in Malaysia consist of a combination of centralize system and decentralize system. The choice between centralize or decentralize sewerage system will need to take consideration the existing situation and also the needs which differ based on the location. There is no universal applicable methodology can provide the definite solution is selection of centralized or decentralize sewage system. The aim of this study is to identify the factor influence for the selection of Sewage Treatment Plant (STP) construction between centralize and decentralize system. Thus, this paper review the current practice of sewerage system in Malaysia and the factors influencing the selection of sewage treatment plant construction with the centralize over decentralize system. The methodology of this study presumed with thorough literature to understand the scenario of the existing sewage treatment plant, gathering information and data collection from the questionnaire survey, and followed data analysis using frequency analysis and average index formula. The results from this study recommend the most influence factor and the implication to the selection of the sewage treatment plant construction. Based on the result, the important factors influencing this decision are topographical, size of catchment and location, land availability, buffer zone requirement, total capital and recurrent cost, requirement for future expansion and environmental impact as well.
ABSTRAK

TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>IV</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>VI</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>VII</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>XIII</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>XIV</td>
</tr>
<tr>
<td>1.</td>
<td>BACKGROUND STUDY</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Research Background</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Research Problem</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Aim Of The Research</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>Objective Of The Research</td>
<td>4</td>
</tr>
<tr>
<td>1.6</td>
<td>Scope Of Study</td>
<td>4</td>
</tr>
<tr>
<td>1.7</td>
<td>Brief Methodology</td>
<td>5</td>
</tr>
</tbody>
</table>
2 SEWERAGE MANAGEMENT SYSTEM IN MALAYSIA

2.1 Introduction 6
2.2 Type of Sewage Management System 7
2.3 Development of Sewerage Sector in Malaysia 8
2.4 Status of Sewerage System in Malaysia 11
2.5 Types of Sewage Treatment Plant in Malaysia 13
 2.5.1 Communal Septic Tank (CST) 13
 2.5.2 Imhoff Tank (IT) 14
 2.5.3 Oxidation Pond (OP) 15
 2.5.4 Mechanical Plant With Media 16
 2.5.4.1 Rotating Biological Contactors (RBC) 16
 2.5.4.2 Trickling Filter (TF) 17
 2.5.4.3 Bio-Soil (BS) 18
 2.5.4.4 Bio-filter (BF) 18
 2.5.5 Mechanical Plant Without Media 19
 2.5.5.1 Extended Aeration (EA) 19
 2.5.5.2 Oxidation Ditch (OD) 20
 2.5.5.3 Sequencing Batch Reactors (SBR) 21

3 FACTORS INFLUENCE IN CONSTRUCTION OF SEWAGE TREATMENT PLANT

3.1 Introduction 22
3.2 Centralize Vs Decentralize Sewage Treatment Plant 23
 3.2.1 Centralize Sewage Treatment Plant 23
 3.2.2 Decentralize Sewage Treatment Plant 24
3.3 Factor Influence in Construction of Sewage Treatment Plant 26
 3.3.1 Economical Aspect 26
 3.3.2 Environmental Aspect 27
 3.3.3 Social Aspect 27
 3.3.4 Technical Aspect 30
4 RESEARCH METHODOLOGY

4.1 Introduction 31
4.2 Method of Data Collection 33
 4.2.1 Primary Data Collection 33
 4.2.2 Secondary Data Collection 34
 4.2.2.1 Validation of Survey Form 34
 Section A 34
 Section B 35
4.3 Data Analysis Method 35
 4.3.1 Analysis Method for Section A 35
 4.3.2 Analysis Method for Section B 36
4.4 Result And Findings 48

5. DATA ANALYSIS AND RESULT

5.1 Introduction 39
5.2 Data Collected for First Stage 40
 5.2.1 Data Analysis for First Stage 41
5.3 Data Collection for Second Stage:
 Development of Validation Survey Form 43
 5.3.1 Section A: Identifying the Factor
 Influence to the Selection of Sewage
 Treatment Plant Construction 43
 5.3.1.1 Buffer Zone Requirement 43
 5.3.1.2 Plant Capacity /
 Population Equivalent 43
 5.3.1.3 Site Selection / Sitting of Sewage
 Treatment Plant (STP) 44
 5.3.1.4 Ease of Construction Process 44
 5.3.1.5 Environmental Concerned 44
 5.3.2 Section B - Design Integration Matrix 47
 5.3.2.1 Safety and Health 47
 5.3.2.2 Future Expansion 49
 5.3.2.3 Land Requirement 49
 5.3.2.4 Costing and Complexity 52
 5.3.2.5 Environmental 52
5.4 Analysis Data for Section A 56
 5.4.1 Buffer Zone Requirement 56
 5.4.2 Plant Capacity / Population Equivalent (PE) 57
 5.4.3 Site Selection / Sitting of Sewage Treatment Plant (STP) 58
 5.4.4 Ease of Construction Process 60
 5.4.5 Environmental Concerned 61
5.5 Analysis Data for Section B 62
 5.5.1 Safety and Health 62
 5.5.2 Future Expansion 66
 5.5.3 Land Requirement 69
 5.5.4 Costing and Complexity 72
 5.5.5 Environmental 76
5.6 Summary 81

6. DISCUSSION OF FINDINGS
 6.1 Introduction 82
 6.2 Buffer Zone Requirement 83
 6.2.1 Safety and Health Category 84
 6.2.2 Future Expansion Category 85
 6.2.3 Environmental 86
 6.3 Plant Capacity / Population Equivalent (PE) 88.
 6.3.1 Future Expansion Category 88
 6.3.2 Costing and Complexity Category 89
 6.4 Site Selection / Sitting of Sewage Treatment Plant 89
 6.4.1 Safety and Health Category 91
 6.4.2 Future Expansion Category 92
 6.4.3 Environmental Category 96
 6.5 Ease of Construction Process 93
 6.5.1 Future Expansion Category 95
 6.5.2 Costing and Complexity Category 96
 6.6 Environmental Concerned 97
 6.6.1 Safety and Health Category 98
 6.6.2 Environment Category 99
7. CONCLUSION AND RECOMMENDATIONS

7.1 Introduction 100

7.2 Conclusion 101

1. To Study the Existing STP System That Used In Malaysia 101

2. To identify the factor which influence in selection of STP 101

3. To evaluate the implication of the factors towards STP. 101

4. To recommend the most influence factor and the implication to be considered in selection of STP. 101

7.3 Limitation of Research 104

7.4 Recommendations for Future Research 104

8. REFERENCES 106

9. APPENDIX 109
LIST OF TABLE

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.0</td>
<td>Development of Sewerage System in Malaysia</td>
<td>10</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Distribution of Sewerage System in Malaysia</td>
<td>12</td>
</tr>
<tr>
<td>Table 3.0</td>
<td>Variables that Influence Sitting</td>
<td>29</td>
</tr>
<tr>
<td>Table 5.0</td>
<td>Distribution of Sewage Treatment Plant Applied in Malaysia</td>
<td>40</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Questionnaire Development for Section A</td>
<td>46</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Design Integration Matrix for Safety and Health</td>
<td>48</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Design Integration Matrix for Future Expansion</td>
<td>50</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Design Integration Matrix for Land Requirement</td>
<td>51</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Design Integration Matrix for Costing and Complexity</td>
<td>53</td>
</tr>
<tr>
<td>Table 5.6</td>
<td>Design Integration Matrix for Environmental</td>
<td>54</td>
</tr>
<tr>
<td>Table 5.7</td>
<td>Questionnaire Development for Section B: Design Integration Matrix</td>
<td>55</td>
</tr>
<tr>
<td>Table 5.8</td>
<td>Summary of Buffer Zone Factor Over Safety and Health</td>
<td>62</td>
</tr>
<tr>
<td>Table 5.9</td>
<td>Summary of Plant Capacity / Population Equivalent Factor Over Safety and Health</td>
<td>63</td>
</tr>
<tr>
<td>Table 5.10</td>
<td>Summary of Site Selection / Sitting of Sewage Treatment Plant Factor Over Safety and Health</td>
<td>64</td>
</tr>
<tr>
<td>Table 5.11</td>
<td>Summary of Ease of Construction Process Factor Over Safety and Health</td>
<td>65</td>
</tr>
<tr>
<td>Table 5.12</td>
<td>Summary of Environmental Concerned Factor Over Safety and Health</td>
<td>65</td>
</tr>
<tr>
<td>Table 5.13</td>
<td>Summary of Buffer Zone Requirement Factor Over Future Expansion</td>
<td>66</td>
</tr>
<tr>
<td>Table 5.14</td>
<td>Summary of Plant Capacity / Population Equivalent Factor Over Future Expansion</td>
<td>67</td>
</tr>
<tr>
<td>Table 5.15</td>
<td>Summary of Site Selection / Sitting of Sewage Treatment Plant Factor Over Future Expansion</td>
<td>67</td>
</tr>
<tr>
<td>Table 5.16</td>
<td>Summary of ease of Construction Process Factor Over Future Expansion</td>
<td>68</td>
</tr>
<tr>
<td>Table 5.17</td>
<td>Summary of Buffer Zone Factor Over Land Requirement</td>
<td>69</td>
</tr>
<tr>
<td>Table 5.18</td>
<td>Summary of Plant Capacity / Population Equivalent Factor Over Land Requirement</td>
<td>70</td>
</tr>
<tr>
<td>Table 5.19</td>
<td>Summary of Site Selection / Sitting of Sewage Treatment Plant Factor Over Land Requirement</td>
<td>70</td>
</tr>
<tr>
<td>Table 5.20</td>
<td>Summary of Ease of Construction Process Factor Over Land Requirement</td>
<td>71</td>
</tr>
<tr>
<td>Table 5.21</td>
<td>Summary of Environmental Concerned Factor Over Land Requirement</td>
<td>71</td>
</tr>
<tr>
<td>Table 5.22</td>
<td>Summary of Buffer Zone Requirement Factor Over Costing and Complexity</td>
<td>72</td>
</tr>
<tr>
<td>Table 5.23</td>
<td>Summary of Plant Capacity / Population Equivalent Factor Over Costing and Complexity</td>
<td>73</td>
</tr>
<tr>
<td>Table 5.24</td>
<td>Summary of Site Selection / Sitting of Sewage Treatment Plant Factor Over Costing and Complexity</td>
<td>74</td>
</tr>
<tr>
<td>Table 5.25</td>
<td>Summary of Ease of Construction Process Factor Over Costing and Complexity</td>
<td>74</td>
</tr>
<tr>
<td>Table 5.26</td>
<td>Summary of Costing and Complexity Factor Over Environmental Concerned</td>
<td>74</td>
</tr>
<tr>
<td>Table 5.27</td>
<td>Summary of Buffer Zone Requirement Factor Over Environmental</td>
<td>75</td>
</tr>
<tr>
<td>Table 5.28</td>
<td>Summary of Plant Capacity / Population Equivalent Factor Over Environmental</td>
<td>76</td>
</tr>
</tbody>
</table>
Table 5.29 Summary of Site Selection / Sitting of Sewage Treatment Plant Factor Over Environmental 78
Table 5.30 Summary of Environmental Concerned Factor Over Environmental 79
Table 5.31 Overall Scored for Design Matrix Integration 80
Table 7.0 Distribution of Existing Sewerage System Applied in Malaysia. 101
Table 7.1 Recommended Factors and Element Implication for Selection of STP Construction 103
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>On site Sewage System</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Off site Sewage System (Multipoint)</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Off site Sewage System (Centralize)</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Evolution of Sewerage System</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Percentage on Numbers</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Percentage on PE</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Communal Septic Tank and Typical Layout Plan</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Imhoff Tank and Typical Layout Plan</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Oxidation Pond and Layout Plan</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Rotating Biological Contactors (RBC) and Layout Plan</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Trickling Filters (TF) and Schematic Diagram</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>Bio-Soil and Layout Plan</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.13</td>
<td>Bio-filter (BF) and Schematic Diagram</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.14</td>
<td>Extended Aeration (EA) and process flow</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.15</td>
<td>Oxidation Ditch (OD) and process flow.</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.16</td>
<td>Sequencing Batch Reactors (SBR) and process flow</td>
<td>21</td>
</tr>
<tr>
<td>Figure 3.0</td>
<td>Centralize Sewage Treatment Plant</td>
<td>24</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Decentralize Sewage Treatment Plant</td>
<td>25</td>
</tr>
<tr>
<td>Figure 4.0</td>
<td>Flow Chart of Research Methodology</td>
<td>32</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Five (5) ordinal measures of agreement by Likert’s Scale</td>
<td>36</td>
</tr>
</tbody>
</table>
Figure 5.0 Percentage of Plant System Applied by
Number of Plant 41

Figure 5.1 Percentage of Plant System Applied by
Population Equivalent (PE) 41

Figure 5.2 Percentage of Sewerage System
Applied in Malaysia 42

Figure 5.3 Sub-factor of Buffer Zone Requirement 57

Figure 5.4 Sub-factor of Plant Capacity /
Population Equivalent (PE) 58

Figure 5.5 Sub-factor of Site Selection / Sitting of
Sewage Treatment Plant (STP) 59

Figure 5.6 Sub-factor of Plant Capacity /
Population Equivalent (PE) 60

Figure 5.7 Sub-factor of Environmental Concerned 61

Figure 6.0 Recommended Factor Influence for
Buffer Zone Requirement 83

Figure 6.1 Recommended Implication under
Safety and Health Category 84

Figure 6.2 Recommended Implication under
Future Expansion Category 85

Figure 6.3 Recommended Implication under
Environmental Category 86

Figure 6.4 Recommended Factor Influence for
Plant Capacity / Population Equivalent 87

Figure 6.5 Recommended Implication under
Future Expansion Category 88

Figure 6.6 Recommended Implication under
Costing and Complexity Category 89

Figure 6.7 Recommended Factor Influence for Site
Selection / Sitting of Sewage Treatment Plant 90

Figure 6.8 Recommended Implication under
Safety and Health Category 91
Figure 6.9 Recommended Implication under Future Expansion Category 92
Figure 6.10 Recommended Implication under Environmental Category 93
Figure 6.11 Recommended Factor Influence for Ease of Construction Process 94
Figure 6.12 Recommended Implication under Future Expansion Category 95
Figure 6.13 Recommended Implication under Costing and Complexity Category 96
Figure 6.14 Recommended Factor Influence for Environmental Concerned 97
Figure 6.15 Recommended Implication under Safety and Health Category 98
Figure 6.16 Recommended Implication under Environmental Category 99
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF</td>
<td>Biofilter</td>
</tr>
<tr>
<td>BOD</td>
<td>Biological Oxygen Demand</td>
</tr>
<tr>
<td>CST</td>
<td>Communal Septic Tank</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Environment</td>
</tr>
<tr>
<td>FRP</td>
<td>Fibre Reinforced Plastics</td>
</tr>
<tr>
<td>IT</td>
<td>Imhoff Tank</td>
</tr>
<tr>
<td>IWK</td>
<td>Indah Water Konsortium Sdn Bhd</td>
</tr>
<tr>
<td>MPM</td>
<td>Mechanical Plant With Media</td>
</tr>
<tr>
<td>MPNM</td>
<td>Mechanical Plant Without Media</td>
</tr>
<tr>
<td>MLSS</td>
<td>Mixed Liquor Suspended Solid</td>
</tr>
<tr>
<td>MLVSS</td>
<td>Mixed Liquor Volatile Suspended Solid</td>
</tr>
<tr>
<td>NH3</td>
<td>Ammonia</td>
</tr>
<tr>
<td>OP</td>
<td>Oxidation Ponds</td>
</tr>
<tr>
<td>RSPP</td>
<td>Raw Sewage Pretreatment Plant</td>
</tr>
<tr>
<td>TS</td>
<td>Trenching System</td>
</tr>
<tr>
<td>STP</td>
<td>Sewage Treatment Plant</td>
</tr>
<tr>
<td>DPE</td>
<td>Design Population Equivalent</td>
</tr>
<tr>
<td>CPE</td>
<td>Connected Population Equivalent</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Questionnaire Survey From</td>
<td>111</td>
</tr>
</tbody>
</table>
CHAPTER 1

BACKGROUND OF STUDY

1.1 Introduction

Wastewater is water that has been affected in the quality which contains liquid waste discharge by domestic residence, commercial properties, industry and agriculture. It can comprise a huge range of potential contaminants and concentration. Sewage is subset of wastewater categorised in terms of its physical, chemical and biological composition. In Malaysia, wastewater is mainly generated from residential household, public toilet, kitchen, laundries and canteen which are located inside the commercial premises and institutional buildings, hospital and restaurants as well.

As populations increase by leaps and bounds, it places more pressure on the environment and threatening sources of fresh water supplies, it was recognised that the problem of 'human waste' needed proper management. Wastewater treatment plants are mushrooming in Malaysia as a response to the increasing demands for better and more effective sanitation services resulting from the country's remarkable economic growth after the 1997 Asian financial crisis (Country:Malaysia Water & Wastewater Report May 2008). There is a need to provide appropriate solution on selecting the construction of Sewerage Treatment Plant (STP) between centralize and decentralize system with a proper intergration and implementation process approach. This study will help in guiding the developing countries such Malaysia to
select appropriate construction of STP towards a comprehensive, moderns and sustainable environment.

1.2 Research Background

The STPs is functioning to collect and treat domestic wastewater produced due to human activities. Sewage from domestic and commercial, industrial and institutional premises have to be treated in order to ensure the water can be safely returned to the environment, and be discharged to rivers or coastal waters. As such, the provision of adequate sewerage infrastructure is of upmost importance to ensure the health and quality of life of the community (Sewerage Development Plan Report 2004).

Malaysia has been undergone various experience and challenges in managing their centralized and decentralized waster water management system. Indah Water Konsortium Sdn Bhd. (IWK) currently managing the public STP since 1996, which sewerage was previously managed by Local Authority (LA) level. Most of the sewerage infrastructure has been developed by the developer to served for their own schemes development which resulted in an ad-hoc and chaotic collection of networks and treatment systems in most part of the country. Hence this resulted in not well designing and building of the STP and yet the STP’s are performing poorly. The fact that there were no proper guideline in place controlling to sewerage issues such as inadequate buffer zone, defective in design, logistic of operation and maintanance the system as well. The situation becomes worsen whenever a huge percentage of the population continously used the improper system such as individual septic tank and primative system.

In Malaysia there are three main sewerage management practise being employed. These can be divided into public sewage treatment plant, private sewage treatment plant and individual septic tank. The individual septic tank is mainly known as on site treatment system with some of are so called pour flush system existing in the more rural area. Meanwhile the used of individual septic tank (IST) are suitable for single dwellings or individual buildings with a population equivalent (PE) up to 150 and installed where there is no central STPs and where effluent discharges will not adversely effect the environment. However, these systems only partially treat the sewage and concentrated groups of tanks can overload the capacity. This problems
of overloading creating unhealthy environment and odour problems (*IWK Sewerage Services report 2003*).

Centralized systems are costly to build and operate especially in areas where population densities low and dispersed household. Alternatively, the decentralized system is gaining more attention for implementation. The decentralized system is not only a long-term solution for small development but is more reliable and cost effective. However, both of these systems allowed vary degrees of system efficiency and functions. Therefore understanding the factor which influence in selecting which type of STP construction is crucial and should be accomplished by conducting a comprehensive study.

1.3 Research Problem

The development of STP in Malaysia operating in a mix system which are centralized and decentralize system. Presently IWK had managed more than five thousand numbers of public sewage treatment plant over the nationwide. All these system function at various degrees of efficiency. Currently there were no universal applicable strategy or methodology available in the selection of system between the centralize and decentralize system. Hence it is important on this study to identify what is the factor that needs to take into consideration for the decision making on the system selection in order to improve the sewerage management system.
1.4 Aim of the Research

This study is aim to identify the factors influence for the selection of Sewage Treatment Plant (STP) construction with centralize over decentralize system.

1.5 Objective of the Research

The aim of study highlighted above will achieve by following objectives:-

i. To study the existing STP system used in Malaysia.
ii. To identify the factor which influence in selection of STP.
iii. To evaluate the implication of the factors towards STP.
iv. To recommend the most influence factor and the implication to be considered in selection of STP.

1.6 Scope of Study

The scope of the study consist of the following aspect:-

i. The study will carry out the current development of public sewage treatment plant managed by IWK.

ii. The study focus on the factor influencing decisions making in selection of STP construction and and the implication integrated with the factors influence. Factors were focused into three main aspects which were social, technical and environmental aspect which divided into several sub-factors.

iii. The study is focusing on the centralized and decentralized system applied in Malaysia sewerage industry.
1.7 **Brief Methodology**

In carrying out this study the methodology adopted four main stages from the literature review to understand and profound knowledge on the research topic, selection of study area, collection of data, data analysis, research finding, discussion, conclusion and recommendation related to the scope study. Hence it is require a systematic idea of methodology in order to have clear understanding of every process in contributing the research preparation. The four (4) main stages used to undertake the study is as follows:-

1. **First Stage** – Literature review from various sources which provide wide range of the information and knowledge as well as understanding pertaining of development STP. The literature review is including report, guideline, handbooks, dissertation, magazine, website and journal.

2. **Second Stage** – Data collection and data analysis. Data collection carried out in two method, first through the report reviews from the agencies involve in sewerage industry and second from the questionnaire survey with the expert panel in the sewerage industry. Analysis and evaluation of data collection within the study area helps to identify the influence factors of STP selection.

3. **Third Stage** – Result and proposal. Based on the data analysis and reading from the literature review, discussion on the research finding to measuring the result and identifying the factor that needs to take into consideration for the appropriate construction of STP.

4. **Fourth Stage** – Comprise of conclusion and recommendation which ended with the factor influence in selecting type of STP construction for appropriate sewerage development.